HW Guide Part A: CRSP Market Returns Indices#

The CRSP (Center for Research in Security Prices) dataset provides two indices for market returns: an equal-weighted index and a value-weighted index (both provided in terms of returns with and without dividends). The equal-weighted index computes the simple average of returns across stocks. This series is available as EWRETD and EWRETX, (with and without dividends, respectively). The value-Weighted Returns index represents a stock market index that calculates the return on investment by considering both the price changes and dividends of each component security, weighted by its market capitalization. This means that larger companies have a greater impact on the index’s performance compared to smaller companies. The value-weighting approach aims to reflect the actual investment returns that an investor would achieve by holding a market portfolio, mirroring the performance of the overall market or specific market segments more accurately than equal-weighted indices. The CRSP indices are widely used in academic research and financial analysis to study market trends, evaluate investment strategies, and benchmark the performance of portfolios against the broader market. This series is available in the CRSP tables under the mnemonic VWRETD and VWRETX (with and without dividends, respectively).

In this guide, we’ll discuss the construction of the equal- and value-weighted market return indices. To construct these indices, we’ll follow the suggestions here: https://wrds-www.wharton.upenn.edu/pages/support/support-articles/crsp/index-and-deciles/constructing-value-weighted-return-series-matches-vwretd-crsp-monthly-value-weighted-returns-includes-distributions/

These suggestions boil down to the most important part: we must select the correct universe of stocks that comprise “the market”.

import pandas as pd

from settings import config
import pull_CRSP_stock
import calc_CRSP_indices
import misc_tools

DATA_DIR = config("DATA_DIR")
df_msf = pull_CRSP_stock.load_CRSP_monthly_file(data_dir=DATA_DIR)
df_msix = pull_CRSP_stock.load_CRSP_index_files(data_dir=DATA_DIR)
df_msix.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 696 entries, 0 to 695
Data columns (total 35 columns):
 #   Column    Non-Null Count  Dtype         
---  ------    --------------  -----         
 0   caldt     696 non-null    datetime64[ns]
 1   vwretd    696 non-null    float64       
 2   vwindd    696 non-null    float64       
 3   vwretx    696 non-null    float64       
 4   vwindx    696 non-null    float64       
 5   ewretd    696 non-null    float64       
 6   ewindd    696 non-null    float64       
 7   ewretx    696 non-null    float64       
 8   ewindx    696 non-null    float64       
 9   sprtrn    696 non-null    float64       
 10  spindx    696 non-null    float64       
 11  decret1   696 non-null    float64       
 12  decind1   696 non-null    float64       
 13  decret2   696 non-null    float64       
 14  decind2   696 non-null    float64       
 15  decret3   696 non-null    float64       
 16  decind3   696 non-null    float64       
 17  decret4   696 non-null    float64       
 18  decind4   696 non-null    float64       
 19  decret5   696 non-null    float64       
 20  decind5   696 non-null    float64       
 21  decret6   696 non-null    float64       
 22  decind6   696 non-null    float64       
 23  decret7   696 non-null    float64       
 24  decind7   696 non-null    float64       
 25  decret8   696 non-null    float64       
 26  decind8   696 non-null    float64       
 27  decret9   696 non-null    float64       
 28  decind9   696 non-null    float64       
 29  decret10  696 non-null    float64       
 30  decind10  696 non-null    float64       
 31  totval    696 non-null    float64       
 32  totcnt    696 non-null    int64         
 33  usdval    696 non-null    float64       
 34  usdcnt    696 non-null    int64         
dtypes: datetime64[ns](1), float64(32), int64(2)
memory usage: 190.4 KB
df_msix[
    [
        "caldt",
        "vwretd",
        "vwretx",
        "vwindx",
        "ewretd",
        "ewretx",
    ]
].tail()
caldt vwretd vwretx vwindx ewretd ewretx
691 2022-08-31 -0.036383 -0.038193 3109.090 -0.007503 -0.009162
692 2022-09-30 -0.092081 -0.093549 2818.238 -0.106628 -0.108430
693 2022-10-31 0.078669 0.077464 3036.551 0.051363 0.050314
694 2022-11-30 0.051431 0.049403 3186.567 0.019866 0.018111
695 2022-12-30 -0.058719 -0.060326 2994.333 -0.050828 -0.053276

Inclusion into the CRSP Market Index:#

From https://wrds-www.wharton.upenn.edu/pages/support/support-articles/crsp/index-and-deciles/constructing-value-weighted-return-series-matches-vwretd-crsp-monthly-value-weighted-returns-includes-distributions/ ,

Our experiments with different VWRETD replication methods show that it is relatively easy to come close to this data series using PERMNO-based returns in the CRSP datasets, but exact matches to every data month is not possible because we do not know the exact sample set of PERMNOs used by CRSP. Their criteria is listed in the CRSP manual and is roughly:

CRSP CAP-BASED PORTFOLIOS – The following types of securities, listed on NYSE, AMEX, and Nasdaq National Market, are eligible for inclusion in the Cap-Based Indices:

  • Common Stocks

  • Certificates

  • Shares of Beneficial Interest

  • Units (Depository Units, Units of Beneficial Interest, Units of Limited Partnership Interest, Depository Receipts, etc.)

The following types of securities are NOT eligible for inclusion in the Cap-Based Indices:

  • ADRs

  • Closed-End Mutual Funds, WEBS Index Funds, Unit Investment Trusts

  • All Common Stocks with non-US Incorporation

  • Americus Trust Components

  • HOLDRs Trusts

  • REITs (Real Estate Investment Trusts)

  • Rights and Warrants

  • Preferred stock

  • “Packaged” Units (Common Stocks Bundled with Rights or Warrants)

  • Over-the-Counter Bulletin Board Issues

  • N.B. The Cap-Based Indices do include returns from time ranges during which eligible securities trade on “leading prices” or “reorganization” when-issued status. The Cap-Based Indices do NOT include returns from time ranges during which eligible securities trade on “ex-distribution” or “additional” when-issued status.

Note that VWRETD is not computed by WRDS but provided directly by CRSP along with the PERMNO based returns. For general SAS coding help for this problem see the WRDS Research Application: Portfolios by Size and Book-to-Market. This WRDS Support document provides examples of cap-based decile breakdowns, but the same general principles apply to the total market index.

I’ve provided code for you that will take care of this subsetting in the function pull_CRSP_monthly_file:

    SELECT 
        date,
        msf.permno, msf.permco, shrcd, exchcd, comnam, shrcls, 
        ret, retx, dlret, dlretx, dlstcd,
        prc, altprc, vol, shrout, cfacshr, cfacpr,
        naics, siccd
    FROM crsp.msf AS msf
    LEFT JOIN 
        crsp.msenames as msenames
    ON 
        msf.permno = msenames.permno AND
        msenames.namedt <= msf.date AND
        msf.date <= msenames.nameendt
    LEFT JOIN 
        crsp.msedelist as msedelist
    ON 
        msf.permno = msedelist.permno AND
        date_trunc('month', msf.date)::date =
        date_trunc('month', msedelist.dlstdt)::date
    WHERE 
        msf.date BETWEEN '{start_date}' AND '{end_date}' AND 
        msenames.shrcd IN (10, 11, 20, 21, 40, 41, 70, 71, 73)

To best understand this, please look up shrcd in the Data Manual here: https://wrds-www.wharton.upenn.edu/documents/396/CRSP_US_Stock_Indices_Data_Descriptions.pdf . You’ll find the information on p. 81.

Calculation of Equal-Weighted Returns and Value-Weighted Returns#

With the proper universe of stocks in hand, all that is left is to group the returns by permno (the identifier of choice here) and average. However, the equal weighted average is a mere simple average. To calculate the value-weighted average, we need to calculate the lagged market cap of each stock \(i\) at time \(t\).

That is, the value-weighted return is given by the following formula:

\[ r_t = \frac{\sum_{i=1}^{N_t} w_{i,t-1} \, r_{i,t}}{\sum_{i=1}^{N_t} w_{i,t-1}} \]

where \(w_{i,t-1}\) is the market capitalization of stock \(i\) at time \(t-1\) and \(r_t\) can be the returns with dividends ret or the returns without dividends retx. The market capitalization of a stock is its price times the shares outstanding, $\( w_{it} = \text{SHROUT}_{it} \times \text{PRC}_{it}. \)$

df_eq_idx = calc_CRSP_indices.calc_equal_weighted_index(df_msf)
df_vw_idx = calc_CRSP_indices.calc_CRSP_value_weighted_index(df_msf)
df_idxs = calc_CRSP_indices.calc_CRSP_indices_merge(df_msf, df_msix)
df_idxs[
    [
        "vwretd",
        "vwretx",
        "ewretd",
        "ewretx",
        "vwretd_manual",
        "vwretx_manual",
        "ewretd_manual",
        "ewretx_manual",
    ]
].head()
vwretd vwretx ewretd ewretx vwretd_manual vwretx_manual ewretd_manual ewretx_manual
date
1965-03-31 -0.009715 -0.011428 0.015393 0.012949 -0.010123 -0.011815 0.015279 0.012819
1965-04-30 0.033652 0.032737 0.041560 0.040315 0.034408 0.033484 0.042506 0.041257
1965-06-30 -0.051868 -0.053592 -0.083718 -0.086084 -0.051150 -0.052780 -0.084370 -0.086684
1965-08-31 0.030883 0.026133 0.041844 0.039063 0.030704 0.025896 0.041610 0.038854
1965-09-30 0.031952 0.030357 0.027420 0.025166 0.032003 0.030430 0.026972 0.024740
df_idxs[
    [
        "vwretd",
        "vwretx",
        "ewretd",
        "ewretx",
        "vwretd_manual",
        "vwretx_manual",
        "ewretd_manual",
        "ewretx_manual",
    ]
].corr()
vwretd vwretx ewretd ewretx vwretd_manual vwretx_manual ewretd_manual ewretx_manual
vwretd 1.000000 0.999475 0.860171 0.860201 0.997999 0.997375 0.857553 0.857803
vwretx 0.999475 1.000000 0.860499 0.860767 0.997391 0.997980 0.857868 0.858413
ewretd 0.860171 0.860499 1.000000 0.999933 0.842205 0.842409 0.997593 0.997505
ewretx 0.860201 0.860767 0.999933 1.000000 0.842226 0.842695 0.997539 0.997595
vwretd_manual 0.997999 0.997391 0.842205 0.842226 1.000000 0.999292 0.840877 0.841120
vwretx_manual 0.997375 0.997980 0.842409 0.842695 0.999292 1.000000 0.841071 0.841651
ewretd_manual 0.857553 0.857868 0.997593 0.997539 0.840877 0.841071 1.000000 0.999911
ewretx_manual 0.857803 0.858413 0.997505 0.997595 0.841120 0.841651 0.999911 1.000000

As you can see above, our manually-created return index doesn’t match the CRSP index perfectly but is still very close. In this HW, you’ll be required to construct this index only approximately. A loose match, as seen here, will be fine.

Note, a helpful tool to create the lagged time series for market capitalization is provided in misc_tools. Use the function with_lagged_column, which will create a lagged column that accounts for the fact that multiple stocks show up in a flat file. See the following example:

a = [
    [1, "1990/1/1", 1],
    [1, "1990/2/1", 2],
    [1, "1990/3/1", 3],
    [2, "1989/12/1", 3],
    [2, "1990/1/1", 3],
    [2, "1990/2/1", 4],
    [2, "1990/3/1", 5.5],
    [2, "1990/4/1", 5],
    [2, "1990/6/1", 6],
]
data = pd.DataFrame(a, columns=["id", "date", "value"])
data["date"] = pd.to_datetime(data["date"])
data
id date value
0 1 1990-01-01 1.0
1 1 1990-02-01 2.0
2 1 1990-03-01 3.0
3 2 1989-12-01 3.0
4 2 1990-01-01 3.0
5 2 1990-02-01 4.0
6 2 1990-03-01 5.5
7 2 1990-04-01 5.0
8 2 1990-06-01 6.0
data_lag = misc_tools.with_lagged_columns(
    df=data, column_to_lag="value", id_column="id", lags=1, freq="MS"
)
data_lag
id date value L1_value
2 1 1990-01-01 1.0 NaN
4 1 1990-02-01 2.0 1.0
6 1 1990-03-01 3.0 2.0
8 1 1990-04-01 NaN 3.0
1 2 1989-12-01 3.0 NaN
3 2 1990-01-01 3.0 3.0
5 2 1990-02-01 4.0 3.0
7 2 1990-03-01 5.5 4.0
9 2 1990-04-01 5.0 5.5
11 2 1990-05-01 NaN 5.0
13 2 1990-06-01 6.0 NaN

As you can see, naively using shift to create our lag would miss the fact that observation 1989-12-01 for stock id=2 should have a missing lagged value. For example, the following would be incorrect:

data["value"].shift(1)
0    NaN
1    1.0
2    2.0
3    3.0
4    3.0
5    3.0
6    4.0
7    5.5
8    5.0
Name: value, dtype: float64